(Farrugia, 1998). Molecular graphics: ORTEP-3 (Farrugia, 1997).

Support from the Swedish Natural Science Research Council (NFR) is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1243). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Brink, C. & Kroese, H. A. S. (1952). Acta Cryst. 5, 433-436.
- Brink, C. & MacGillavry, C. H. (1949). Acta Cryst. 2, 158-163.
- Brink, C. & van Arkel, A. E. (1952). Acta Cryst. 5, 506-510.
- Brink Shoemaker, C. (1973). Z. Kristallogr. 137, 225-239.
- Brown, I. D., Howard-Lock, H. E. & Natarajan, M. (1977). Can. J. Chem. 55, 1511-1514.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1998). WinGX. A Windows Program Package for Crystal Structure Analysis. University of Glasgow, Scotland.
- Kildea, J. D., Skelton, B. W. & White, A. H. (1986). Aust. J. Chem. 39, 171-175.
- Molecular Structure Corporation (1997). TEXSAN for Windows. Single Crystal Structure Analysis Software. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1997). SHELXL97, Release 97-2. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

(Sheldrick, 1997) included in the WinGX program system genides (Ln = La - Er, Y; M = Cu, Ag; N = Si - Sn; Q = S, Se) (Guittard et al., 1968). These compounds crystallize in the non-centrosymmetric space group P63 and hence should exhibit piezoelectric and second-order non-linear optical behavior. La₃CuSiS₇ shows a very strong piezoelectric effect (Flahaut & Laruelle, 1970). The structure

Acta Cryst. (1999). C55, 1210-1212

Dy₃CuGeSe₇

FU QIANG HUANG AND JAMES A. IBERS

Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston. IL 60208-3113, USA. E-mail: ibers@chem.nwu.edu

(Received 23 February 1999; accepted 26 March 1999)

Abstract

The structure of tridysprosium copper germanium heptaselenide has been determined from single-crystal X-ray data. This non-centrosymmetric structure (space group P6₃) is of the La₃CuSiS₇ structure type, comprising CuSe₃ triangles, GeSe₄ tetrahedra, and DySe₈ bicapped trigonal prisms.

Comment

La₃CuSiS₇ (Flahaut & Laruelle, 1970) was the first Fig. 2. Partial view of the structure of Dy₃CuGeSe₇, shown with 90% structure reported of the family of Ln_3MNQ_7 chalco-

probability displacement ellipsoids.

of La₃AgGeS₇, a new member of the series, has been re- Refinement ported (Hwu et al., 1995). Here, yet another new member of the series, namely Dy₃CuGeSe₇, is described.

The basic structure comprises three structural motifs, i.e. DySe₈ bicapped trigonal prisms, planar CuSe₃ triangles, and GeSe₄ tetrahedra, as shown in Figs. 1 and 2. Only DySe₈ trigonal prisms form corner-sharing chains along the c axis, whereas the isolated CuSe₃ triangles (6_3 axis through Cu) are staggered parallel to c, and GeSe₄ tetrahedra (3 axis through Ge) pack parallel to c. The DySe₈ units are connected to CuSe₃ and GeSe₄ units through Se1, and Sc2, and Se3. A Cu atom is displaced 0.128 Å from the plane of the Se1/Se2/Se3 triangle; the Cu \cdot Cu distance is 3.0161 (4) Å.

Experimental

Crystals of Dy₃CuGeSe₇ were obtained from an initial mixture of Dy (1.0 mmol, Aldrich, 40 mesh powder, 99.9%), Ge (1.0 mmol, Alfa Aesar, 100 mesh powder, 99.999%), Cu (1.0 mmol, Aldrich, powder, 99.999%), Se (4.0 mmol, Aldrich, 100 mesh powder, 99.5+%), and DyCl₃ (2.5 mmol, Aldrich, powder, 99.9%) as flux. The mixture was loaded under argon, sealed under 10^{-4} Torr in a fused-silica tube (1 Torr = 133.322 Pa), heated in a furnace to 1123 K at 1 K min⁻¹, kept at 1123 K for 70 h, cooled at a rate of 0.05 K min⁻¹ to 573 K. and finally cooled to room temperature. The reaction mixture was washed with water and acetone. The major component, Dy₃CuGeSe₇, forms as hexagonal brown needles. Analysis of these crystals with an EDX-equipped Hitachi S-4500 SEM showed the presence of Dy, Cu, Ge and Se in the ratio 3:1:1:7.

Crystal data

(plus 390 Friedel-related

reflections)

Dy ₃ CuGeSe ₇	Mo $K\alpha$ radiation
$M_r = 1176.35$	$\lambda = 0.71073 \text{ Å}$
Hexagonal	Cell parameters from 2187
P63	reflections
a = 10.2499(9) Å	$\theta = 2.29 - 28.16^{\circ}$
c = 6.0322 (8) Å	$\mu = 47.93 \text{ mm}^{-1}$
$V = 548.84 (10) \text{ Å}^3$	T = 153(2) K
Z = 2	Needle
$D_r = 7.118 \text{ Mg m}^{-3}$	$0.22 \times 0.02 \times 0.01 \text{ mm}$
D_m not measured	Brown
Data collection	
Bruker Smart 1000 CCD	831 reflections with
diffractometer	$I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.038$
Absorption correction:	$\theta_{\rm max} = 28.16^{\circ}$
face-indexed numerical	$h = -13 \rightarrow 11$
(Sheldrick, 1997b)	$k = -13 \rightarrow 13$
$T_{\rm min} = 0.111, T_{\rm max} = 0.672$	$l = -7 \rightarrow 7$
3631 measured reflections	Intensity decay: <2%
492 independent reflections	y

Refinement on F^2	Extinction correction:
$R[F^2 > 2\sigma(F^2)] = 0.021$	SHELXL97
$wR(F^2) = 0.053$	Extinction coefficient:
S = 1.037	0.0019 (2)
882 reflections	Scattering factors from
38 parameters	International Tables for
$w = 1/[\sigma^2(F_o^2) + (0.03F_o^2)^2]$	Crystallography (Vol. C)
$(\Delta/\sigma)_{\rm max} < 0.001$	Absolute structure:
$\Delta \rho_{\rm max} = 1.607 \ {\rm e} \ {\rm \AA}^{-3}$	Flack (1983)
$\Delta \rho_{\rm min} = -1.279 \ {\rm e} \ {\rm \AA}^{-3}$	Flack parameter = 0.08 (8)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

 $U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i . \mathbf{a}_j.$

	х	у	z	U_{eo}
Dy	0.22051 (4)	0.35671 (4)	0.42074 (10)	0.00893 (13)
Cu	0	0	0.4737 (3)	0.0132 (5)
Ge	2/3	1/3	0.3361 (3)	0.0086 (4)
Se1	0.26309 (9)	0.10279 (9)	0.45248 (15)	0.0095 (2)
Se2	0.51895 (10)	0.42570 (10)	0.17352(15)	0.00860 (19)
Se3	1/3	2/3	0.2213 (2)	0.0096 (3)

Table 2. Selected distances (Å)

Dy—Se1	2.8525 (9)	Dy—Se2	3.1493 (10)
Dy—Sel ¹	2.8982 (9)	Dy-Se1"	3.3163(12)
Dy—Se2"	2.9112 (10)	Cu-Sel	2.3574 (8)
Dy-Sel ^m	2.9475 (12)	Cu—Cu'	3.0161 (4)
Dy-Se2 ^{iv}	2.9935 (10)	Ge—Se3"	2.323 (2)
Dy—Se3	3.0340 (8)	Ge—Se2	2.3631 (11)

Symmetry codes: (i) -y, x-y, z; (ii) $1-x, 1-y, \frac{1}{2}+z$; (iii) $x-y, x, z-\frac{1}{2}$; (iv) $x - y, x, \frac{1}{2} + z$; (v) $-x, -y, z - \frac{1}{2}$.

The crystal-to-detector distance for data collection was 5.023 cm. Crystal decay was monitored by recollecting 50 initial frames at the end of data collection. Each exposure was 20 s and covered -0.3° in ω . Data were collected in groups of 606 frames at φ settings of 0, 120, and 240°. Anisotropic displacement parameters were used for all atoms. All sites are fully occupied.

Data collection: SMART (Bruker, 1997). Cell refinement: SMART. Data reduction: SAINT-Plus (Bruker, 1997). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a). Molecular graphics: SHELXTL/PC (Sheldrick, 1997b). Software used to prepare material for publication: SHELXTLI-PC.

This research was supported by the US National Science Foundation through grant No. DMR97-09351.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1239). Services for accessing these data are described at the back of the journal.

References

Bruker (1997). SMART and SAINT-Plus. Versions 5.101. Data Collection and Processing Software for the SMART System. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA. Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Flahaut, J. & Laruelle, P. (1970). Chemistry of Extended Defects of Non-Metallic Solids, edited by L. Eyring & M. O'Keeffe, pp. 109– 123. Amsterdam: North-Holland Publishing Co.
- Guittard, M., Julien-Pouzol, M., Laruelle, P. & Flahaut, J. (1968). C. R. Acad. Sci. Paris Ser. C, 267, 767–769.
- Hwu, S. J., Bucher, C. K., Carpenter, J. D. & Taylor, S. P. (1995). Inorg. Chem. 34, 1979-1980.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTLIPC. Version 5.101. An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA.